
9.2 | Model of Conduction in Metals

Learning Objectives

By the end of this section, you will be able to:

• Define the drift velocity of charges moving through a metal

• Define the vector current density

• Describe the operation of an incandescent lamp

When electrons move through a conducting wire, they do not move at a constant velocity, that is, the electrons do not
move in a straight line at a constant speed. Rather, they interact with and collide with atoms and other free electrons in the
conductor. Thus, the electrons move in a zig-zag fashion and drift through the wire. We should also note that even though
it is convenient to discuss the direction of current, current is a scalar quantity. When discussing the velocity of charges in a
current, it is more appropriate to discuss the current density. We will come back to this idea at the end of this section.

Drift Velocity
Electrical signals move very rapidly. Telephone conversations carried by currents in wires cover large distances without
noticeable delays. Lights come on as soon as a light switch is moved to the ‘on’ position. Most electrical signals carried by

currents travel at speeds on the order of 108 m/s , a significant fraction of the speed of light. Interestingly, the individual

charges that make up the current move much slower on average, typically drifting at speeds on the order of 10−4 m/s . How

do we reconcile these two speeds, and what does it tell us about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a distance. Thus,
when a free charge is forced into a wire, as in Figure 9.7, the incoming charge pushes other charges ahead of it due to the
repulsive force between like charges. These moving charges push on charges farther down the line. The density of charge in
a system cannot easily be increased, so the signal is passed on rapidly. The resulting electrical shock wave moves through
the system at nearly the speed of light. To be precise, this fast-moving signal, or shock wave, is a rapidly propagating change
in the electrical field.

Figure 9.7 When charged particles are forced into this volume
of a conductor, an equal number are quickly forced to leave. The
repulsion between like charges makes it difficult to increase the
number of charges in a volume. Thus, as one charge enters,
another leaves almost immediately, carrying the signal rapidly
forward.

Good conductors have large numbers of free charges. In metals, the free charges are free electrons. (In fact, good electrical
conductors are often good heat conductors too, because large numbers of free electrons can transport thermal energy as well
as carry electrical current.) Figure 9.8 shows how free electrons move through an ordinary conductor. The distance that an
individual electron can move between collisions with atoms or other electrons is quite small. The electron paths thus appear
nearly random, like the motion of atoms in a gas. But there is an electrical field in the conductor that causes the electrons to

drift in the direction shown (opposite to the field, since they are negative). The drift velocity v→ d is the average velocity

of the free charges. Drift velocity is quite small, since there are so many free charges. If we have an estimate of the density
of free electrons in a conductor, we can calculate the drift velocity for a given current. The larger the density, the lower the
velocity required for a given current.
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Figure 9.8 Free electrons moving in a conductor make many
collisions with other electrons and other particles. A typical path
of one electron is shown. The average velocity of the free

charges is called the drift velocity v→ d and for electrons, it is

in the direction opposite to the electrical field. The collisions
normally transfer energy to the conductor, requiring a constant
supply of energy to maintain a steady current.

Free-electron collisions transfer energy to the atoms of the conductor. The electrical field does work in moving the electrons
through a distance, but that work does not increase the kinetic energy (nor speed) of the electrons. The work is transferred to
the conductor’s atoms, often increasing temperature. Thus, a continuous power input is required to keep a current flowing.
(An exception is superconductors, for reasons we shall explore in a later chapter. Superconductors can have a steady current
without a continual supply of energy—a great energy savings.) For a conductor that is not a superconductor, the supply of
energy can be useful, as in an incandescent light bulb filament (Figure 9.9). The supply of energy is necessary to increase
the temperature of the tungsten filament, so that the filament glows.

Figure 9.9 The incandescent lamp is a simple design. A tungsten filament is placed in a partially
evacuated glass envelope. One end of the filament is attached to the screw base, which is made out of a
conducting material. The second end of the filament is attached to a second contact in the base of the bulb.
The two contacts are separated by an insulating material. Current flows through the filament, and the
temperature of the filament becomes large enough to cause the filament to glow and produce light.
However, these bulbs are not very energy efficient, as evident from the heat coming from the bulb. In the
year 2012, the United States, along with many other countries, began to phase out incandescent lamps in
favor of more energy-efficient lamps, such as light-emitting diode (LED) lamps and compact fluorescent
lamps (CFL) (credit right: modification of work by Serge Saint).

We can obtain an expression for the relationship between current and drift velocity by considering the number of free
charges in a segment of wire, as illustrated in Figure 9.10. The number of free charges per unit volume, or the number

density of free charges, is given the symbol n where n = number of charges
volume . The value of n depends on the material. The
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shaded segment has a volume Avd dt , so that the number of free charges in the volume is nAvd dt . The charge dQ in this

segment is thus qnAvd dt , where q is the amount of charge on each carrier. (The magnitude of the charge of electrons is

q = 1.60 × 10−19 C .) Current is charge moved per unit time; thus, if all the original charges move out of this segment in

time dt, the current is

I = dQ
dt = qnAvd.

Rearranging terms gives

(9.4)vd = I
nqA

where vd is the drift velocity, n is the free charge density, A is the cross-sectional area of the wire, and I is the current

through the wire. The carriers of the current each have charge q and move with a drift velocity of magnitude vd .

Figure 9.10 All the charges in the shaded volume of this wire
move out in a time dt, having a drift velocity of magnitude vd .

Note that simple drift velocity is not the entire story. The speed of an electron is sometimes much greater than its drift
velocity. In addition, not all of the electrons in a conductor can move freely, and those that do move might move somewhat
faster or slower than the drift velocity. So what do we mean by free electrons?

Atoms in a metallic conductor are packed in the form of a lattice structure. Some electrons are far enough away from the
atomic nuclei that they do not experience the attraction of the nuclei as strongly as the inner electrons do. These are the free
electrons. They are not bound to a single atom but can instead move freely among the atoms in a “sea” of electrons. When
an electrical field is applied, these free electrons respond by accelerating. As they move, they collide with the atoms in the
lattice and with other electrons, generating thermal energy, and the conductor gets warmer. In an insulator, the organization
of the atoms and the structure do not allow for such free electrons.

As you know, electric power is usually supplied to equipment and appliances through round wires made of a conducting
material (copper, aluminum, silver, or gold) that are stranded or solid. The diameter of the wire determines the current-
carrying capacity—the larger the diameter, the greater the current-carrying capacity. Even though the current-carrying
capacity is determined by the diameter, wire is not normally characterized by the diameter directly. Instead, wire is
commonly sold in a unit known as “gauge.” Wires are manufactured by passing the material through circular forms called
“drawing dies.” In order to make thinner wires, manufacturers draw the wires through multiple dies of successively thinner
diameter. Historically, the gauge of the wire was related to the number of drawing processes required to manufacture
the wire. For this reason, the larger the gauge, the smaller the diameter. In the United States, the American Wire Gauge
(AWG) was developed to standardize the system. Household wiring commonly consists of 10-gauge (2.588-mm diameter)
to 14-gauge (1.628-mm diameter) wire. A device used to measure the gauge of wire is shown in Figure 9.11.
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Figure 9.11 A device for measuring the gauge of electrical
wire. As you can see, higher gauge numbers indicate thinner
wires. (credit: Joseph J. Trout)

Example 9.3

Calculating Drift Velocity in a Common Wire

Calculate the drift velocity of electrons in a copper wire with a diameter of 2.053 mm (12-gauge) carrying a
20.0-A current, given that there is one free electron per copper atom. (Household wiring often contains 12-gauge
copper wire, and the maximum current allowed in such wire is usually 20.0 A.) The density of copper is

8.80 × 103 kg/m3 and the atomic mass of copper is 63.54 g/mol.

Strategy

We can calculate the drift velocity using the equation I = nqAvd . The current is I = 20.00 A and

q = 1.60 × 10−19 C is the charge of an electron. We can calculate the area of a cross-section of the wire using

the formula A = πr2 , where r is one-half the diameter. The given diameter is 2.053 mm, so r is 1.0265 mm. We

are given the density of copper, 8.80 × 103 kg/m3 , and the atomic mass of copper is 63.54 g/mol . We can use

these two quantities along with Avogadro’s number, 6.02 × 1023 atoms/mol , to determine n, the number of free

electrons per cubic meter.

Solution

First, we calculate the density of free electrons in copper. There is one free electron per copper atom. Therefore,

the number of free electrons is the same as the number of copper atoms per m3 . We can now find n as follows:

n = 1 e−
atom × 6.02 × 1023 atoms

mol × 1 mol
63.54 g × 1000 g

kg × 8.80 × 103 kg
1 m3

= 8.34 × 1028 e− /m3.

The cross-sectional area of the wire is

A = πr2 = π⎛
⎝
2.05 × 10−3 m

2
⎞
⎠

2
= 3.30 × 10−6 m2.

Rearranging I = nqAvd to isolate drift velocity gives
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vd = I
nqA = 20.00 A

(8.34 × 1028 /m3)(−1.60 × 10−19 C)(3.30 × 10−6 m2)
= −4.54 × 10−4 m/s.

Significance

The minus sign indicates that the negative charges are moving in the direction opposite to conventional current.

The small value for drift velocity (on the order of 10−4 m/s) confirms that the signal moves on the order of

1012 times faster (about 108 m/s) than the charges that carry it.

Check Your Understanding In Example 9.4, the drift velocity was calculated for a 2.053-mm
diameter (12-gauge) copper wire carrying a 20-amp current. Would the drift velocity change for a 1.628-mm
diameter (14-gauge) wire carrying the same 20-amp current?

Current Density
Although it is often convenient to attach a negative or positive sign to indicate the overall direction of motion of the charges,

current is a scalar quantity, I = dQ
dt . It is often necessary to discuss the details of the motion of the charge, instead of

discussing the overall motion of the charges. In such cases, it is necessary to discuss the current density, J→ , a vector

quantity. The current density is the flow of charge through an infinitesimal area, divided by the area. The current density
must take into account the local magnitude and direction of the charge flow, which varies from point to point. The unit of
current density is ampere per meter squared, and the direction is defined as the direction of net flow of positive charges
through the area.

The relationship between the current and the current density can be seen in Figure 9.12. The differential current flow

through the area d A
→

is found as

dI = J→ · d A
→

= JdA cos θ,

where θ is the angle between the area and the current density. The total current passing through area d A
→

can be found

by integrating over the area,

(9.5)I = ∬
area

J→ · d A
→

.

Consider the magnitude of the current density, which is the current divided by the area:

J = I
A = n|q|Avd

A = n|q|vd.

Thus, the current density is J→ = nq v→ d . If q is positive, v→ d is in the same direction as the electrical field E→ .

If q is negative, v→ d is in the opposite direction of E→ . Either way, the direction of the current density J→ is in the

direction of the electrical field E→ .
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Figure 9.12 The current density J→ is defined as the

current passing through an infinitesimal cross-sectional area
divided by the area. The direction of the current density is the
direction of the net flow of positive charges and the magnitude
is equal to the current divided by the infinitesimal area.

Example 9.4

Calculating the Current Density in a Wire

The current supplied to a lamp with a 100-W light bulb is 0.87 amps. The lamp is wired using a copper wire with
diameter 2.588 mm (10-gauge). Find the magnitude of the current density.

Strategy

The current density is the current moving through an infinitesimal cross-sectional area divided by the area. We can

calculate the magnitude of the current density using J = I
A . The current is given as 0.87 A. The cross-sectional

area can be calculated to be A = 5.26 mm2 .

Solution

Calculate the current density using the given current I = 0.87 A and the area, found to be A = 5.26 mm2 .

J = I
A = 0.87 A

5.26 × 10−6 m2 = 1.65 × 105 A
m2.

Significance

The current density in a conducting wire depends on the current through the conducting wire and the cross-
sectional area of the wire. For a given current, as the diameter of the wire increases, the charge density decreases.

Check Your Understanding The current density is proportional to the current and inversely proportional
to the area. If the current density in a conducting wire increases, what would happen to the drift velocity of the
charges in the wire?

What is the significance of the current density? The current density is proportional to the current, and the current is the
number of charges that pass through a cross-sectional area per second. The charges move through the conductor, accelerated
by the electric force provided by the electrical field. The electrical field is created when a voltage is applied across the
conductor. In Ohm’s Law, we will use this relationship between the current density and the electrical field to examine the
relationship between the current through a conductor and the voltage applied.
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